2,020 research outputs found

    Portable high-speed photometry systems for observing occultations

    Get PDF
    Because of their high spatial resolution, stellar occultations have proven extremely effective for learning about planetary upper atmospheres, asteroids, and planetary rings. The ring orbit studies for Uranus have been particularly fruitful because researchers have been able, through occultations, to obtain data of high spatial resolution (approximately 2 km) at the rate of 1 to 2 times per year. THe occultation program at M.I.T. involves: (1) identifying the scientific questions that can be answered by occultation events, (2) predicting the zone of visibilty for the useful events, (3) maintaining and improving a set of portable high-speed photometric systems, (4) obtaining the observations, and (5) reducing the data and interpreting the results. Accomplishments during the past year include: (1) a comprehensive analysis of stellar occultation data to obtain an oblateness for Uranus at the 10 ubar level of 0.0193 plus or minus 0.0010, a value consistent with the planet being in hydrostatic equilibrium and undergoing rotation at the period found by Voyger; (2) establishing an upper limit of 0.004 km on the equivalent depth of 1986U1R from 2.2 micrometer occultation data; (3) the discovery of low-amplitude waves on the edges of the epsilon ring of Uranus; and (4) the acquisition of several hundred charge coupled device strip scans of 6 weeks at Mauna Kea for the purpose of generating a prediction for the stellar occultation of Pluto

    Occultation studies of the solar system

    Get PDF
    Because of their high spatial resolution, stellar occultations have proven extremely effective for learning about planetary upper atmospheres, asteroids, and planetary rings. The occultation program at MIT involves the following: (1) identifying the scientific questions that can be answered by occultation events; (2) predicting the zone of visibility for the useful events; (3) maintaining and improving a high speed CCD camera for observing occultations; (4) obtaining the observations; and (5) reducing the data and interpreting the results

    Stellar Occultation Studies of the Solar System

    Get PDF
    Earth-based observations of stellar occultations provide extremely high spatial resolution for bodies in the outer solar system, about 10,000 times better than that of traditional imaging observations. Stellar occultation data can be used to establish the structure of atmospheres and rings of solar system bodies at high spatial resolution. Airborne occultation observations are particularly effective, since the controlled mobility of the observing platform allows the observer to fly within the optimum part of the occultation shadow for most events that are visible from Earth. Airborne observations are carried out above any clouds and are nearly free of scintillation noise from the Earth's atmosphere. KAO occultation observations resulted in the first detection of gravity waves in the Martian atmosphere, discovery of the Uranian rings, the first detection of Pluto's atmosphere, the first Earth-based investigations of Triton's atmosphere, and the discovery of narrow jets from Chiron's nucleus. The first SOFIA occultation opportunity will be an investigation of Pluto's atmospheric structure in November, 2002, and will resolve a problem that has lingered since the KAO discovery observation fourteen years earlier. We plan to continue our successful airborne occultation program with the greatly enhanced capability provided by SOFIA. We propose here to replace our KAO occultation photometer with one having twice the throughput, half the noise, a somewhat wider wavelength range, four times the field of view, and ten times the frame rate to optimize its performance and to capitalize on the larger collecting area offered by SOFIA. It will also allow for simultaneous visible and IR occultation observations, greatly enriching the results that we can obtain from occultations. We call this new imaging occultation photometer HOPI (High-speed Occultation Photometer and Imager). HOPI will provide a signal-to-noise ratio two to four times that of our present photometer for a given event, will permit useful observations of the more numerous events involving fainter stars, and will allow higher time resolution observations to be made. HOPI's characteristics also make it an ideal instrument for initial and ongoing evaluations of the SOFIA telescope's performance

    The Atmospheric Structure of Triton and Pluto

    Get PDF
    The goal of this research was to better determine the atmospheric structures of Triton and Pluto through further analysis of three occultation data sets obtained with the Kuiper Airborne Observatory (KAO.) As the research progressed, we concentrated our efforts on the Triton data, as this appeared to be the most fruitful. Three papers have been prepared as a result of this research. The first paper presents new results about Triton's atmospheric structure from the analysis of all ground-based stellar occultation data recorded to date, including one single-chord occultation recorded on 1993 July 10 and nine occultation lightcurves from the double-star event on 1995 August 14. These stellar occultation observations made both in the visible and in the infrared have good spatial coverage of Triton, including the first Triton central-flash observations, and are the first data to probe the altitude level 20-100 km on Triton. The small-planet lightcurve model of J. L. Elliot and L. A. Young was generalized to include stellar flux refracted by the far limb, and then fitted to the data. Values of the pressure, derived from separate immersion and emersion chords, show no significant trends with latitude, indicating that Triton's atmosphere is spherically symmetric at approximately 50 km altitude to within the error of the measurements; however, asymmetry observed in the central flash indicates the atmosphere is not homogenous at the lowest levels probed (approximately 20 km altitude). From the average of the 1995 occultation data, the equivalent isothermal temperature of the atmosphere is 47 plus or minus 1 K and the atmospheric pressure at 1400 km radius (approximately 50 km altitude) is 1.4 plus or minus 0.1 microbar. Both of these are not consistent with a model based on Voyager UVS and RSS observations in 1989. The atmospheric temperature from the occultation is 5 K colder than that predicted by the model and the observed pressure is a factor of 1.8 greater than the model. In our opinion, the disagreement in temperature and pressure is probably due to modeling problems at the microbar level, since measurements at this level have not previously been made. Alternatively, the difference could be due to seasonal change in Triton's atmospheric structure. The second paper reports observations of a recent stellar occultation by Triton which, when combined with earlier results, show that Triton has undergone a period of global warming since 1989. The most conservative estimates of the rate of temperature and surface-pressure increase during this period imply that the atmosphere is doubling in bulk every 10 years -- significantly faster than predicted by published frost model for Triton. Our results suggests that permanent polar caps on Triton play a dominant role in regulating seasonal atmospheric changes. Similar processes should also be active on Pluto. A third paper 'Global Warming on Triton' will appear in a the January 1999 issue of Sky and Telescope

    New Mysteries at Chiron

    Get PDF
    Considered as a comet, Chiron is unusual in two respects: (1) it exhibits outbursts at great distances from the sun (nearly up to its aphelion distance of 18.9 AU), and (2) its nucleus is much larger than any other known comet. It is similar in size, however, to the recently discovered Kuiper belt objects, leading to the conjecture that Chiron is closely related to these objects, but its chaotic orbit has brought it much closer to the sun. Our work with the Kuiper Airborne Observatory resulted in the first stellar occultation by Chiron observed simultaneously at visible and infrared wavelengths. We detected four features in the coma, with different degrees of certainty. Our conclusions about Chiron from this work and a previous stellar occultation are: (1) the jet-like features observed provide evidence that the coma material originates from just a few, small active areas, rather than uniform sublimation; (2) a bound coma has possibly been detected; (3) the particle radii in at least one of the jet-like features are larger than 0.25 gm; (4) material in Chiron's orbit plane has likely been detected; and (5) the radius of Chiron's nucleus lies between 83 and 156 km

    Stellar Occultation Studies of the Solar System

    Get PDF
    Earth-based observations of stellar occultations provide extremely high spatial resolution for bodies in the outer solar system, about 10,000 times better than that of traditional imaging observations. Stellar occultation data can be used to establish the structure of atmospheres and rings of solar system bodies at high spatial resolution. Airborne occultation observations are particularly effective, since the controlled mobility of the observing platform allows the observer to fly within the optimum part of the occultation shadow for most events that are visible from Earth. Airborne observations are carried out above any clouds and are nearly free of scintillation noise from the Earth's atmosphere. KAO occultation observations resulted in the first detection of gravity waves in the Martian atmosphere, discovery of the Uranian rings, the first detection of Pluto's atmosphere, the first Earth-based investigations of Triton's atmosphere, and the discovery of narrow jets from Chiron's nucleus. The first SOFIA occultation opportunity will be an investigation of Pluto's atmospheric structure in November, 2002, and will resolve a problem that has lingered since the KAO discovery observation fourteen years earlier. We plan to continue our successful airborne occultation program with the greatly enhanced capability provided by SOFIA. We propose here to replace our KAO occultation photometer with one having twice the throughput, half the noise, a somewhat wider wavelength range, four times the field of view, and ten times the frame rate to optimize its performance and to capitalize on the larger collecting area offered by SOFIA. It will also allow for simultaneous visible and IR occultation observations, greatly enriching the results that we can obtain from occultations. We call this new imaging occultation photometer HOPI (High-speed Occultation Photometer and Imager). HOPI will provide a signal-to-noise ratio two to four times that of our present photometer for a given event, will permit useful observations of the more numerous events involving fainter stars, and will allow higher time resolution observations to be made. HOPI's characteristics also make it an ideal instrument for initial and ongoing evaluations of the SOFIA telescope's performance

    Morphological and molecular characterisation of a mixed Cryptosporidium muris/Cryptosporidium felis infection in a cat

    Get PDF
    To date Cryptosporidium muris has been identified by microscopy and genotyping in cats in two studies. We report morphological and genetic evidence of a mixed C. muris and C. felis infection in a cat and provide the first histological, immunohistochemical, in situ hybridisation and genetic confirmation of a C. muris infection in the stomach of a cat. The cat suffered persistent diarrhoea after the initial consultation, which remained unresolved, despite several medical interventions. Further studies are required to determine the range, prevalence and clinical impact of Cryptosporidium species infecting cats

    Large Bodies in the Kuiper Belt

    Get PDF
    We present a survey for bright Kuiper Belt Objects (KBOs) and Centaurs, conducted at the Kitt Peak National Observatory (KPNO) 0.9 m telescope with the KPNO 8k Mosaic CCD. The survey imaged 164 sq deg near opposition to a limiting red magnitude of 21.1. Three bright KBOs and one Centaur were found, the brightest KBO having red magnitude 19.7, about 700 km in diameter assuming a dark Centaur-like 4% albedo. We estimate the power-law differential size distribution of the Classical KBOs to have index q = 4.2 (+0.4)(-0.3), with the total number of Classical KBOs with diameters larger than 100 km equal to 4.7 (+1.6)(-1.0) x 10^4. Additionally, we find that if there is a maximum object size in the Kuiper Belt, it must be larger than 1000 km in diameter. By extending our model to larger size bodies, we estimate that 30 (+16)(-12) Charon-sized and 3.2 (+2.8)(-1.7) Pluto-sized Classical KBOs remain undiscovered.Comment: 33 pages, 7 figures, to appear in Nov 2001 Astronomical Journa

    Transit Timing Variation Analysis of Ogle-Tr-132b with Seven New Transits

    Get PDF
    December 15, 2010We report the results of the first transit timing variation analysis of the very hot Jupiter OGLE-TR-132b, using 10 transits collected over a seven-year period. Our analysis combines three previously published transit light curves with seven new transits, which were observed between 2008 February and 2009 May with the new MagIC-e2V instrument on the Magellan Telescopes in Chile. We provide a revised planetary radius of R[subscript p] = 1.23 ± 0.07R[subscript J] , which is slightly larger, but consistent within the errors, than that given by previously published results. Analysis of the planet-to-star radius ratio, orbital separation, inclination, and transit duration reveals no apparent variation in any of those parameters during the time span observed. We also find no sign of transit timing variations larger than –108 ± 49 s, with most residuals very close to zero. This allows us to place an upper limit of 5-10 M [subscript ⊕] for a coplanar, low-eccentricity perturber in either the 2:1 or 3:2 mean-motion resonance with OGLE-TR-132b. We similarly find that the data are entirely consistent with a constant orbital period and there is no evidence for orbital decay within the limits of precision of our data.United States. National Aeronautics and Space Administration (Origins Grant NNX07AN63G
    • …
    corecore